49 research outputs found

    A Multi-Scale Examination of Stopover Habitat Use by Birds

    Get PDF
    Most of our understanding of habitat use by migrating land birds comes from studies conducted at single, small spatial scales, which may overemphasize the importance of intrinsic habitat factors, such as food availability, in shaping migrant distributions. We believe that a multi-scale approach is essential to assess the influence of factors that control en route habitat use. We determined the relative importance of eight variables, each operating at a habitat-patch, landscape, or regional spatial scale, in explaining the differential use of hardwood forests by Nearctic-Neotropical land birds during migration. We estimated bird densities through transect surveys at sites near the Mississippi coast during spring and autumn migration within landscapes with variable amounts of hardwood forest cover. At a regional scale, migrant density increased with proximity to the coast, which was of moderate importance in explaining bird densities, probably due to constraints imposed on migrants when negotiating the Gulf of Mexico. The amount of hardwood forest cover at a landscape scale was positively correlated with arthropod abundance and had the greatest importance in explaining densities of all migrants, as a group, during spring, and of insectivorous migrants during autumn. Among landscape scales ranging from 500 in to 10 km radius, the densities of migrants were, on average, most strongly and positively related to the amount of hardwood forest cover within a 5 km radius. We suggest that hardwood forest cover at this scale may be an indicator of habitat quality that migrants use as a cue when landing at the end of a migratory flight. At the patch scale, direct measures of arthropod abundance and plant community composition were also important in explaining migrant densities, whereas habitat structure was of little importance. The relative amount of fleshy-fruited trees was positively related and was the most important variable explaining frugivorous migrant density during autumn. Although constraints extrinsic to habitat had a moderate role in explaining migrant distributions, our results are consistent with the view that food availability is the ultimate factor shaping the distributions of birds during stopover

    Linking Animals Aloft with the Terrestrial Landscape

    Get PDF
    Despite using the aerosphere for many facets of their life, most flying animals (i.e., birds, bats, some insects) are still bound to terrestrial habitats for resting, feeding, and reproduction. Comprehensive broad-scale observations by weather surveillance radars of animals as they leave terrestrial habitats for migration or feeding flights can be used to map their terrestrial distributions either as point locations (e.g., communal roosts) or as continuous surface layers (e.g., animal densities in habitats across a landscape). We discuss some of the technical challenges to reducing measurement biases related to how radars sample the aerosphere and the flight behavior of animals. We highlight a recently developed methodological approach that precisely and quantitatively links the horizontal spatial structure of birds aloft to their terrestrial distributions and provides novel insights into avian ecology and conservation across broad landscapes. Specifically, we present case studies that (1) elucidate how migrating birds contend with crossing ecological barriers and extreme weather events, (2) identify important stopover areas and habitat use patterns of birds along their migration routes, and (3) assess waterfowl response to wetland habitat management and restoration. These studies aid our understanding of how anthropogenic modification of the terrestrial landscape (e.g., urbanization, habitat management), natural geographic features, and weather (e.g., hurricanes) can affect the terrestrial distributions of flying animals

    Linking Animals Aloft with the Terrestrial Landscape

    Get PDF
    Despite using the aerosphere for many facets of their life, most flying animals (i.e., birds, bats, some insects) are still bound to terrestrial habitats for resting, feeding, and reproduction. Comprehensive broad-scale observations by weather surveillance radars of animals as they leave terrestrial habitats for migration or feeding flights can be used to map their terrestrial distributions either as point locations (e.g., communal roosts) or as continuous surface layers (e.g., animal densities in habitats across a landscape). We discuss some of the technical challenges to reducing measurement biases related to how radars sample the aerosphere and the flight behavior of animals. We highlight a recently developed methodological approach that precisely and quantitatively links the horizontal spatial structure of birds aloft to their terrestrial distributions and provides novel insights into avian ecology and conservation across broad landscapes. Specifically, we present case studies that (1) elucidate how migrating birds contend with crossing ecological barriers and extreme weather events, (2) identify important stopover areas and habitat use patterns of birds along their migration routes, and (3) assess waterfowl response to wetland habitat management and restoration. These studies aid our understanding of how anthropogenic modification of the terrestrial landscape (e.g., urbanization, habitat management), natural geographic features, and weather (e.g., hurricanes) can affect the terrestrial distributions of flying animals

    Innovative Visualizations Shed Light on Avian Nocturnal Migration

    Get PDF
    We acknowledge the support provided by COST–European Cooperation in Science and Technology through the Action ES1305 ‘European Network for the Radar Surveillance of Animal Movement’ (ENRAM) in facilitating this collaboration. We thank ENRAM members and researchers attending the EOU round table discussion ‘Radar aeroecology: unravelling population scale patterns of avian movement’ for feedback on the visualizations. We thank Arie Dekker for his feedback as jury member of the bird migration visualization challenge & hackathon hosted at the University of Amsterdam, 25–27 March 2015. We thank Willem Bouten and Kevin Winner for discussion of methodological design. We thank Kevin Webb and Jed Irvine for assistance with downloading, managing, and reviewing US radar data. We thank the Royal Meteorological Institute of Belgium for providing weather radar data.Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals’ life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations. Weather surveillance radar networks in Europe and North America have great potential for long-term low-cost monitoring of bird migration at scales that have previously been impossible to achieve. Such long-term monitoring, however, poses a number of challenges for the ornithological and ecological communities: how does one take advantage of this vast data resource, integrate information across multiple sensors and large spatial and temporal scales, and visually represent the data for interpretation and dissemination, considering the dynamic nature of migration? We assembled an interdisciplinary team of ecologists, meteorologists, computer scientists, and graphic designers to develop two different flow visualizations, which are interactive and open source, in order to create novel representations of broad-front nocturnal bird migration to address a primary impediment to long-term, large-scale nocturnal migration monitoring. We have applied these visualization techniques to mass bird migration events recorded by two different weather surveillance radar networks covering regions in Europe and North America. These applications show the flexibility and portability of such an approach. The visualizations provide an intuitive representation of the scale and dynamics of these complex systems, are easily accessible for a broad interest group, and are biologically insightful. Additionally, they facilitate fundamental ecological research, conservation, mitigation of human–wildlife conflicts, improvement of meteorological products, and public outreach, education, and engagement.Yeshttp://www.plosone.org/static/editorial#pee

    Migrant-Habitat Relationships During Stopover Along an Ecological Barrier: Extrinsic Constraints and Conservation Implications

    No full text
    For migrating land birds, the influence of extrinsic factors (e.g., weather and energetic condition) on stopover site selection relative to factors intrinsic to habitat (e.g., food) may be especially acute after crossing a large ecological barrier. We quantified bird distributions during spring and autumn migration along the coast of Mississippi after birds had crossed the Gulf of Mexico using weather surveillance radar data to test our prediction that bird distributions would be less closely associated with a proximate cue to intrinsic habitat quality (the amount of forest cover in the landscape) as proximity to the coastline increased during spring. Relative bird density was positively associated with the amount of hardwood forest in the landscape during both seasons, and broadly with proximity to the coastline during spring. In spring, bird density was less closely associated with the amount of hardwood forest with greater proximity to the coast. Due to extrinsic constraints associated with crossing the Gulf of Mexico during spring, most migrants appear to select sites for resting within 18 km from the coastline during their initial landfall and seek resource-rich habitats for refueling further inland during subsequent stopovers. During autumn, most birds seek resource-rich stopover sites inland from the coast in which to refuel before crossing the Gulf of Mexico. Because stopover habitat may be limiting to some populations of migratory land birds, the disproportionately high rates of human development and deforestation along with the reduced availability and amount of protection of forests in near-coastal areas create urgency for the conservation of forested stopover sites along the Gulf of Mexico

    Quantifying Bird Density During Migratory Stopover Using Weather Surveillance Radar

    No full text
    Increasingly, data from weather surveillance radars are being used by biologists investigating the ecology and behavior of birds, insects, and bats in the aerosphere. Unfortunately, these radars quantify echoes caused by layered biological targets such as migrating birds in a manner that introduces bias in radar measures. We investigated the performance of a bias-adjustment algorithm that adjusts radar measures for vertical variation of reflectivity, nonstandard beam refraction, and spatial displacement of radar targets. We evaluated the efficacies of four variations of this algorithm by their ability to increase correspondence between radar reflectivity measured at two weather radar sites and the ground density of migrating birds measured during two autumn seasons and two spring seasons among 24 hardwood forest sites along the northern coast of the Gulf of Mexico. The algorithm integrated close-range reflectivity data from the five lowest elevation angle sweeps to derive high-resolution vertical profiles of reflectivity (VPRs) that closely corresponded to the observed vertical target density profiles based on a vertically oriented portable radar. The radar reflectivity of birds aloft near the onset of migratory flight was positively correlated with the bird density on the ground. All four radar data adjustment schemes that we tested produced significant improvement in the accuracy of bird density estimates relative to unadjusted radar data. In general, adjusting reflectivity based solely on the VPRs derived using observed refractive conditions yielded the most accurate radar-based estimates of bird density

    Geographic Position and Landscape Composition Explain Regional Patterns of Migrating Landbird Distributions during Spring Stopover along the Northern Coast of the Gulf of Mexico

    No full text
    Annual migration of landbirds across the Gulf of Mexico (GOM) presents a unique opportunity to examine extrinsic processes operating at various spatial scales in determining animal distributions. Our objectives were to comprehensively quantify bird stopover densities across the northern GOM coast and model broad-scale factors explaining distributional patterns. We used weather surveillance radars to measure reflectivity of birds aloft at onset of nocturnal migratory flights and estimate bird stopover densities during four springs (2009-2012) for 6.7 million ha along the GOM. We aggregated bird densities to one longitudinal degree and 3 km of proximity to coast. Boosted Regression Tree models revealed that stopover density was related to year, longitude, proximity to coast, and amount of hardwood forest cover in the landscape. Average longitudinal patterns supported previous studies of broad-scale trans-Gulf migrant arrivals with highest density in Louisiana (92-93A degrees W) and lowest in Alabama (88-89A degrees W). Florida (83-84A degrees W) supported a second peak in migrant density, suggesting an eastern trans-Gulf route or contribution from trans-Caribbean migrants. Longitudinal patterns in migrant distributions varied strongly between years and appear generally related to variability in GOM wind patterns. Densities increased with proximity to coast, highlighting constraints on migrants to travel inland, especially in Florida\u27s panhandle. Despite this, density was positively related to amount of forest cover more steeply along the immediate coast. Broad-scale stopover distributions of migrating landbirds along the GOM coast are heavily influenced by geographic constraints in the context of the GOM acting as a barrier to landbird migration
    corecore